Document Details

Document Type : Article In Journal 
Document Title :
Approximating fixed points of non-self nonexpansive mappings in Banach spaces
Approximating fixed points of non-self nonexpansive mappings in Banach spaces
 
Subject : Mathematics 
Document Language : English 
Abstract : Suppose K is a nonempty closed convex nonexpansive retract of a real uniformly convex Banach space E with P as a nonexpansive retraction. Let T:K→E be a nonexpansive non-self map with F(T):={x∈K:Tx=x}≠∅. Suppose {xn} is generated iteratively byx1∈K,xn+1=P((1-αn)xn+αnTP[(1-βn)xn+βnTxn]),n≥1, where {αn} and {βn} are real sequences in [ε,1-ε] for some ε∈(0,1). (1) If the dual E* of E has the Kadec-Klee property, then weak convergence of {xn} to some x*∈F(T) is proved; (2) If T satisfies condition (A), then strong convergence of {xn} to some x*∈F(T) is obtained. 
ISSN : 0362-546X 
Journal Name : Nonlinear Analysis, Theory, Methods and Applications 
Volume : 61 
Issue Number : 6 
Publishing Year : 1426 AH
2005 AD
 
Article Type : Article 
Added Date : Sunday, January 1, 2012 

Researchers

Researcher Name (Arabic)Researcher Name (English)Researcher TypeDr GradeEmail
نصير شهزادShahzad, Naseer ResearcherDoctoratenshahzad@kau.edu.sa

Files

File NameTypeDescription
 31906.pdf pdfAbstract

Back To Researches Page